
GTLib

GTLib ii

COLLABORATORS

TITLE :

GTLib

ACTION NAME DATE SIGNATURE

WRITTEN BY January 13, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

GTLib iii

Contents

1 GTLib 1

1.1 Blitz Basic 2 GadTools Library . 1

1.2 Introduction . 1

1.3 Installing the bbgtlib . 2

1.4 Commands available in the library . 2

1.5 Example source for the BBGTLib . 4

1.6 List of bugs in the BBGTLib . 5

1.7 The source for the bbgtlib . 5

1.8 Improvements that need to be made . 5

1.9 History of the gtlib . 6

1.10 Thank you to... 9

1.11 Who to contact . 9

1.12 attachgtlist . 9

1.13 detachgtlist . 10

1.14 gtactivategadget . 10

1.15 gtarrowsize . 11

1.16 gtbevelbox . 11

1.17 gtbutton . 12

1.18 gtchangecycle . 13

1.19 gtchangelist . 14

1.20 gtcheckbox . 15

1.21 gtcycle . 16

1.22 gtdisable . 17

1.23 gtenable . 17

1.24 gteventmicros . 18

1.25 gteventseconds . 18

1.26 gtfreegadget . 19

1.27 gtgadptr . 19

1.28 gtgetattrs . 20

1.29 gtgetinteger . 21

GTLib iv

1.30 gtgetinternal . 21

1.31 gtgetstring . 22

1.32 gtgzzposition . 22

1.33 gtinteger . 23

1.34 gtlist . 24

1.35 gtlistaddress . 25

1.36 gtlistview . 25

1.37 gtmx . 27

1.38 gtnewlookprop . 28

1.39 gtnumber . 29

1.40 gtpalette . 30

1.41 gtscroller . 32

1.42 gtsetattrs . 33

1.43 gtsethighlight . 34

1.44 gtsetinteger . 34

1.45 gtsetstring . 35

1.46 gtshape . 35

1.47 gtslider . 36

1.48 gtstatus . 38

1.49 gtstring . 38

1.50 gttags . 40

1.51 gttext . 40

1.52 gttoggle . 41

1.53 gtunderscore . 42

1.54 gtuserdata . 42

GTLib 1 / 43

Chapter 1

GTLib

1.1 Blitz Basic 2 GadTools Library

Introduction

Installation

Commands

Examples

Bugs

The source

Future

History

Thanks

Contact
The maintainer accepts no responsibility for any damage caused to ←↩

your system
from the use of this library, or any of the other files in this archive.

Some of the information in this guide might be wrong, so don’t blame me, just
contact me so I can get it fixed.

1.2 Introduction

The bbgtlib is a library for AmiBlitz2/Blitz Basic 2 on the Amiga ←↩
which allows you

to create Intuition gadgets using the gadtools.library (the standard user ←↩
interface

creation library from OS2 to OS3.1).

GTLib 2 / 43

Please report any bugs in the library or this guide to the
maintainer
.

1.3 Installing the bbgtlib

If you have AmiBlitz and are using a "decompiled" acidlibs then you simply
need to copy the bbgtlib.obj file to whatever directory it currently resides
in.

If you have an "acidlibs" file version of Blitz2 then use the supplied
script (UpdateAcidlibs). If you have separate library files then copy
bbgtlib.obj to blitzlibs:basic/ and then run makedeflibs or use
BlitzLibMan to remake your deflibs file (if you have a deflibs file).

1.4 Commands available in the library

If you intend on using this library in your programs, and are ←↩
looking for

any kind of use more advanced than the most basic, I would suggest you get
a copy of the Amiga OS Includes & Autodocs, as this will explain many of the
tags and options available in these commands.

Most of these descriptions will not use values, but will use the constants
which are defined in amigalibs.res. Make sure you have "blitzlibs:amigalibs.res"
in the Resident list of the Compiler Options window (found in the Compiler
menu).

AFAIK, all the gadgets should produce #IDCMP_GADGETHELP events, assuming
you set that in the IDCMP flags for your window to include gadget help
events and you are using OS3+.

AttachGTList

DetachGTList

GTActivateGadget

GTArrowSize

GTBevelBox

GTButton

GTChangeCycle

GTChangeList

GTCheckBox

GTLib 3 / 43

GTCycle

GTDisable

GTEnable

GTEventMicros

GTEventSeconds

GTFreeGadget

GTGadPtr

GTGetAttrs

GTGetInteger

GTGetInternal

GTGetString

GTGZZPosition

GTInteger

GTList

GTListAddress

GTListView

GTMX

GTNewLookProp

GTNumber

GTPalette

GTScroller

GTSetAttrs

GTSetHighlight

GTSetInteger

GTSetString

GTShape

GTSlider

GTStatus

GTLib 4 / 43

GTString

GTTags

GTText

GTToggle

GTUnderscore

GTUserData
(These are sorted alphabetically (duh!) NOT by token number!)

1.5 Example source for the BBGTLib

This archive contains the following examples. You can load the examples
into Blitz2 directly from this guide by clicking on the "Load" buttons in
this page - but you must have the ShowExample script installed correctly
(part of AmiBlitz2 and BSS).

File Description
gtbutton Shows the various ways to create and handle GTButton gadgets Load
gtcheckbox As above, but for checkbox gadgets (toggle select) Load
gtcycle As above, but for cycle gadget (1-of-n select) Load
gtinteger As above, but for integer gadgets (numeric entry) Load
gtlistview As above, but for listview gadgets (displays scrollable list of ←↩

text) Load
gtmx As above, but for MX gadgets (1-of-n select, all options visible) ←↩

Load
gtnumber As above, but for number gadgets (read only numeric display) Load
gtpalette As above, but for palette gadgets (colour selection) Load
gtscroller As above, but for scroller gadgets (range between limits) Load
gtshape As above, but for shape gadgets (any kind of image) Load
gtslider As above, but for slider gadgets (single value between limits) ←↩

Load
gtstring As above, but for string gadgets (text entry) Load
gttext As above, but for text gadgets (read only text display) Load

gtbevelbox Shows the different styles of bevel boxes that can be drawn Load
gtchangecycle Demo of how to use the GTChangeCycle command Load
gtchangelist Demo of the GTChangeList command and proper usage Load
gtgetattr Demo of GTGetAttrs when used with a GTCycle Load
gtgetinteger GTGetInteger demo on both GTInteger and GTNumber Load
gtgetstring Demo of GTGetString on GTString and GTText gadgets Load
gtnewlookprop Shows how to use the 2 different modes of GTNewLookProp Load
gtsetinteger Sets the contents of integer and number gadgets Load
gtsetstring Similar to above, but sets contents of string and text gadgets ←↩

Load
gttoggle Toggles the status of a GTButton gadget (in toggle mode) Load
gtunderscore Gadget text underlined in different ways with GTUnderscore Load
gtuserdata How to set and get the UserData field of Gadtools gadgets Load
messagetimes A proof that the GTEvent#? commands work correctly Load

Note that you may need to change some of the fonts in the examples - these

GTLib 5 / 43

were added to check that the font used for the gadget could be loaded
correctly.

And if you are using AmiBlitz then you will probably need to go into the
"Compiler Options" window (from the "Compiler" menu) and change the
"blitzlibs:amigalibs.res" to "blitzlibs:all.res".

1.6 List of bugs in the BBGTLib

None currently known, but please send reports of any you find (←↩
and source code

if possible) to the
maintainer

.

1.7 The source for the bbgtlib

The source file is included for the first time. This is so that the library
can be updated, even if I am uncontactable (although I don’t know who’d be
interested in this library or doing updates). Anyway, this source was based
on the source for the library by Acid which they released in the library
developer information archive (and has been available on the web for a long
time, along with a lot of their other libs). I had to re-code the same
functionality that was provided by the RWE update (as it was old source) and
have now got around to adding new features. If you do want to make updates to
this library, feel free, and send me a copy or make it publicly available. I
would also ask you to consider NOT breaking anything in the library or changing
the way commands work (too much) - I know, people fear change :)
NB, my including the source in this archive does not mean that I will not
continue to provide bugfixes or updates when necessary.

The source is 100% ASM and compiles in Blitz 2. If you want to use some other
assembler, you would need to port the library creation macros from Blitz to
a format your assembler would understand.

The source file can be found in this archive in the Source/gtlib.bb2 file,
which saved as ASCII so it can be read by anything.

1.8 Improvements that need to be made

I am not saying these will be done by me, it depends on interest and time
available. Of course, anyone else willing to do these is welcome to. This is
just a list of things that I have noticed that could enhance the library.

* Add more and better error checking for the debugger

* More examples would be nice

* Some more items need to be added to the "See Also" sections of the command

GTLib 6 / 43

descriptions.

1.9 History of the gtlib

Current history:
13th August 2004 (David McMinn)

* Fixed bug which caused program to crash when GTChangeCycle was used
when the GTList was attached to a window

26th April 2003 (David McMinn)

* Fixed a sma;ll bug which caused GTToggle list,id,state to not work

12th April 2003 (Bernd Roesch)

* Updated guide file so that examples load from help in AmiBlitz2.

25th June 2002 (David McMinn)

* Removed debug ouput from library which I had mistakenly compiled into it, ←↩
making all

the commands really slow.

27th February 2002 (David McMinn)

* Removed code to set GadgetRender and SelectRender fields of GTShapes to 0, ←↩
since it

seems it would clear it for all gadgets - previous versions of the library ←↩
were

broken in this respect and that is why it worked :)

* GTToggle bug where using it before attaching a GTList to a Window would ←↩
cause

intuition.library to hang is fixed. Added check for NULL window and skips
refreshing the gadget if that is the case.

* GTButton and GTShape now have extra flag to set initial status of gadget ←↩
if they

are being used in toggle mode"

* GTGadPtr was accessing the GTList object from the wrong address register ←↩
as

so it sometimes did not work for getting gadget pointers.

1st February 2002 (David McMinn)

* Rewrite finally complete (phew) ;)

31st January 2002 (David McMinn)

* GTGetString, GTGetInteger, GTSetString and GTSetInteger now check the
gadget type of the gadget to determine what kind of gadget it is
rather than assuming other values will/will not be 0.

30th January 2002 (David McMinn)

* GTGetString re-implemented. Now uses GT_GetGadgetAttrsA_ on OS3+ machines.

* Same done for GTGetInteger (assumes Gadget\SpecialInfo=0 for GTNumbers)
has the added bonus of actually working for GTNumbers now (only OS3+
since the old code is still used for pre-v39)

* Fixed enforcer hit in GTGetInteger

* GTGetAttrs quits silently on pre-v39 machines (no more crashing ;)

GTLib 7 / 43

* GTBevelBox checks for GTList not being attached to a window and exits
(no more crashing when debugger is turned off)

* More guide updates and examples

29th January 2002 (David McMinn)

* All memory in BBGTLib freed when not needed any more

* GTUnderscore completed

* GTGadPtr again has only 2 parameters (GTList#,ID.w)

* GTGZZPos now influences GTBevelBox’s

* GTChangeCycle completed (silly bugs)

28th January 2002 (David McMinn)

* GTNumber now has flag for controlling whether gadget has border or not.

* GTShape flags now work correctly. Also, extra flags for making shape
gadgets into toggle gadgets and turning off IDCMP_GADGETUP messages
is possible.

25th January 2002 (David McMinn)

* Updated this guide some more, to include descriptions of what tags cannot
be used with commands (use the parameters instead), fixed some of the
types in the command descriptions, command return values, etc.

* Examples for all gadget creation commands added.

* More commands found that do not free memory until program exit
(in fact, the Text$ parameter for all commands). Fixed.

* Added option in GTText to remove gadget border.

* Added option to GTScrollers and GTSliders to stop them sending
IDCMP_GADGETUP events.

* Added option of getting IDCMP_GADGETDOWN events from GTShape gadgets

* GTUnderscore added (not completely functional yet)

26th December 2001 (David McMinn)

* Fixed some mistakes in this guide (wrong types for command parameters).

* Gadget creation commands are now commands and can optionally return a
pointer to the gadget that is created (can also be used as a success
indicator).

* GTListAddress, GTUserData, GTChangeCycle and GTGetInternal added.

* Complete rewrite for many internal bugfixes (e.g. non-creation of gadgets
cannot screw up an entire list, exact gadget pointers stored internally
for easy access, etc)

* Memory for GTMX and GTCycle gadgets freed when gadgets are freed, to
prevent memory fragmentation and slowdown.

1st September 2001 (David McMinn)

* Updated docs for GTCheckBox, GTMX and GTSlider, for information on scaling ←↩
the

checkboxes and MX gadgets and other tags for the slider.

28th November 2000 (David McMinn)

* Fixed GTBevelBox when using debugger, was checking for errors from the ←↩
wrong address register

26th November 2000 (David McMinn)

* Added option for GTBevelBox to specify the frame type (OS3+!)

GTLib 8 / 43

* Fixed the above option :(

25th November 2000 (David McMinn)

* GTGadPtr now behaves like the original Acid version, although with an ←↩
optional

parameter it will behave like the update of 15/8/2000.

* Added GTNewLookProp

* Bumped date in GTList help string

* Would like to make all the gadget creation routines commands
which return a pointer to the gadget created

15th August 2000 (David McMinn)

* Fixed problems with GTGadPtr and GTSetAttrs for GTListviews (and possibly ←↩
palettes?)

[GTGadPtr now searches for the last item in the GTList with the
ID we are looking for]

* Latest build date added to the help text of the GTList dumtoke

* Really need to go through and make all routines use a standard findgad ←↩
routine

to get the gadget pointer and check the return result from some things

19th April 2000 (David McMinn)

* GTGetStatus renamed to GTStatus

* highlight shape now displayed correctly, was testing the wrong memory ←↩
location

when checking for the highlight image flag being set

3rd April 2000 (David McMinn)

* added detachgtlist

* added gtgzzposition

* added gtsethighlight

* added gtfreegadget but it needs to be rewritten

* added gtactivategadget

* fixed possible enforcer death from hell in internal routine "findgadget"

* hopefully the free gtlist will now also free the Image structures ←↩
allocated for GTShapes and still work with VP

* and the same with the GTFreeGadget routine

2nd April 2000 (David McMinn)

* Started a much needed update

* Commenting some routines

* Fixed free gtlist bug for visual prefs

* fixed gtshapes having wrong PlanePick values

* fixed gtshapes having wrong highlight images

Ancient history:

RWE done some nifty updates and released that version, although the
source was never available.

Andre Bergmann added GTShape commands and bugfixed some other stuff.

In the beginning there was Acid, and when Mark Sibly created the Blitz,
there was much rejoicing. So it was obviously Mark and Simon Armstrong
that wrote the first versions of the bbgtlib. The source was made
available in the library developer archive (on some Blitz related FTP

GTLib 9 / 43

site and from Acid).

1.10 Thank you to...

* Mark Sibly, Simon Armstrong and the other guys at Acid that created Blitz2

* Everyone who updated the library before me (RWE, Andre Bergmnn, ???)

* Jean-Marc Gigandet for the idea for the GTNewLookProp command and bug
reporting

* Bernd Roesch for reporting the GTCycle and GTMX problem with not freeing
memory until program exit, and for suggesting the additions to the
IDCMP message pre-handler.

* Kev Harrison for the GTChangeCycle bug report

* Thilo Kohler for the GTEventMicros and GTEventSeconds command
suggestions.

* All the guys on the Blitz list for testing the library, providing
feedback and bug reports

1.11 Who to contact

Currently, the only contact for updating and providing bugfixes for the
GTLib is David McMinn. If anyone else would like to be listed here,
give me an email, and make sure you understand the source :)

David McMinn dave@blitz-2000.co.uk ICQ 16827694

If you don’t get me at either of those, email the Blitz list, I should
be on that under some address.

1.12 attachgtlist

Command name
AttachGTList

Template
AttachGTList GTList#,Window#

Parameters
GTList# - The number of the GTList object you wish to attach
Window# - The number of the Window object you wish to attach to

Returns
Nothing

Description

GTLib 10 / 43

Attaches the specified GTList to the specified window. The gadgets in
the list will now be in the window and will be operational (user can
use the gadgets). You can only have 1 GTList attached to a window
at any time. You can only attach a GTList to 1 window at a time.

You should define all your gadgets in a GTList while it is not attached
to a window.

See also

DetachGTList

1.13 detachgtlist

Command name
DetachGTList

Template
DetachGTList GTList#

Parameters
GTList# - The number of the GTList object you wish to remove from a window

Returns
Nothing

Description
Removes the specified GTList from the window it is attached to. You can only
detach a GTList once (unless you attach it again before you call this command
the next time).

See also

AttachGTList

1.14 gtactivategadget

Command name
GTActivateGadget

Template
GTActivateGadget GTList#,id

Parameters
GTList# - The object number of the GTList in which the gadget can be found
id(.w) - The ID number of the gadget to activate

Returns
Nothing

GTLib 11 / 43

Description
Activates a string type gadget (string or integer) or a custom gadget.
In the case of the string type, the gadget will be activated and the
cursor will appear in the gadget, allowing you to type into it. In the
case of custom gadgets, the behaviour will depend on the gadget.

See also

GTInteger
,
GTString

1.15 gtarrowsize

Command name
GTArrowSize

Template
GTArrowSize size

Parameters
size(.l) - The size you wish to set the arrow gadgets on GTScrollers to

Returns
Nothing

Description
Sets the current size of the arrow gadgets on GTScroller gadgets. Any
GTScroller gadgets you create after calling this command will use the
size specified. In the case or horizontal scrollers, the size sets the
width of the arrows. In the case of vertical scrollers, the size sets
the height of the arrows.

Defaults to 16.

See also

GTScroller

1.16 gtbevelbox

Command name
GTBevelBox

Template
GTBevelBox GTList#,x,y,w,h,flags[,type]

Parameters
GTList# - the object number of the GTList to take the information for

the box from

GTLib 12 / 43

x(.l) - x position of the top left corner
y(.l) - y position of the top left corner
w(.l) - width of the box
h(.l) - height of the box
flags(.l) - Flag to set what state of box to draw (0=raised,

anything else=recessed)
type(.l) - Specifies the type of frame to draw (optional parameter,

only works on OS3+). Available types are:
#BBFT_BUTTON - Looks like a standard button (default)
#BBFT_RIDGE - Looks like a string gadget
#BBFT_ICONDROPBOX - Imagery suitable for icon drop box

Returns
Nothing

Description
Draws a rectangular box (just the edges, does not draw the inner area) on
the window which the GTList is currently attached to. This is not a gadget,
only a piece of drawing, so you will need to redraw this yourself when a
window needs refreshed.

See also

AttachGTList

1.17 gtbutton

Command name
GTButton

Template
[*g.Gadget=]GTButton [(] GTList#,id,x,y,w,h,Text$,flags[,UserData.l] [)]

Parameters
GTList# - The number of the GTList object you want to add the new

GTButton gadget to
id(.w) - The ID number for this gadget. This should be a unique

value for every gadget in a GTList. If your program is
going to run on OS2, you should be aware that gadtools
uses some gadget ID’s internally (and if they clash, you
will not get any events from the gadgets with the clashing
ID values). Starting the ID values at about 51 is
usually safe enough.

x(.w) - x position of top left corner of gadget
y(.w) - y position of top left corner of gadget
w(.w) - width of gadget
h(.w) - height of gadget
Text$ - String to add to the gadget. This string can be placed

either to the left, right, above, below or inside the
gadget. The flags (below) control the position of this.

flags(.l) - The flags control many aspects of the gadget. The flags
that can be used with this type of gadget (combine them
using the "or" symbol: "|") are:

(you can only use one of the #PLACETEXT flags at any time)

GTLib 13 / 43

#PLACETEXT_LEFT - Text$ is located left of the gadget (←↩
default)

#PLACETEXT_RIGHT - Text$ is located right of the gadget
#PLACETEXT_ABOVE - Text$ is located above the gadget
#PLACETEXT_BELOW - Text$ is located below the gadget
#PLACETEXT_IN - Text$ is located inside the gadget
#NG_HIGHLABEL - Text$ will be highlighted
$40 - Disable (gadget is ghosted and unusable)
$80 - Immediate (gadget produces events when ←↩

clicked
down, as well as when released)

$100 - If the gadget is in toggle mode (see below ←↩
)

setting this flag will make the
initial state "pressed".

$2000 - Makes the gadget a toggle gadget (the
gadget will stay selected until the
user clicks on the gadget again)

UserData(.l) - Optional parameter which allows you to set the value of
the UserData field of the gadget when it is created.

Returns
Pointer to the gadget which has been created. At a simpler level, it can
be used to show whether the command was a success (non-zero value will be
returned) or not (returns 0 for failure).

Description
Creates a standard push-button type gadget and adds it to the specified
GTList object.

The font that the text for the gadget appears in is the currently "Used"
Intuifont object.

You cannot specify GA_Disabled, GA_Immediate or GT_Underscore tags in
the user specified taglist - use the flags aboive instead.

See also

GTGZZPosition
,
GTTags

1.18 gtchangecycle

Command name
GTChangeCycle

Template
[success.l]=GTChangeCycle [(] GTList#,id,option$ [)]

Parameters
GTList# - The number of the GTList object that the gadget is in
id(.w) - The ID number of the gadget - THIS MUST BE A CYCLE GADGET!
Option$ - The options you want to display in the GTCycle. Each option

GTLib 14 / 43

must be separated by a "|" character, e.g. "foo|bar|snafu"

Returns
This will return true (-1) for successfully being able to change the
contents of the GTCycle and false (0) if it failed. If it failed, the
previous contents of the GTCycle will still be there.

Also can be used without the return value.

Description
This command is used to change the options which are being offered in
a GTCycle gadget. You should only use this on GTCycle gadgets, it
will produce weird results if used on other types of gadgets.

When the items in the GTCycle gadget are changed, the first item
in the string will be the one which is displayed.

See also

GTCycle

1.19 gtchangelist

Command name
GTChangeList

Template
GTChangeList GTList#,id [,List()]

Parameters
GTList# - The number of the GTList obejct which contains the GTListview

you want to change the display of
id(.w) - The ID number of the GTListview
List() - List to attach or leave out to detach a list

Returns
Nothing

Description
This command can either attach a list array or detach a list array from a
GTListView gadget. If you want to modify a list while the gadgets are
attached to a window, you need to detach it by calling this command without
the List() parameter. You can then do whatever you like to the list. Once
you want to display the list again, call this command and specify the list
you want to display.

See also

GTListView

GTLib 15 / 43

1.20 gtcheckbox

Command name
GTCheckBox

Template
[*g.Gadget=]GTCheckBox [(] GTList#,id,x,y,w,h,Text$,flags [)]

Parameters
GTList# - The number of the GTList object you want to add the new

GTCheckBox to
id(.w) - The ID number for this gadget. This should be a unique

value for every gadget in a GTList. If your program is
going to run on OS2, you should be aware that gadtools
uses some gadget ID’s internally (and if they clash, you
will not get any events from the gadgets with the clashing
ID values). Starting the ID values at about 51 is
usually safe enough.

x(.w) - x position of top left corner of gadget
y(.w) - y position of top left corner of gadget
w(.w) - width of gadget
h(.w) - height of gadget
Text$ - String to add to the gadget. This string can be placed

either to the left, right, above, below or inside the
gadget. The flags (below) control the position of this.

flags(.l) - The flags control many aspects of the gadget. The flags
that can be used with this type of gadget (combine them
using the "or" symbol: "|") are:

(you can only use one of the #PLACETEXT flags at any time)
#PLACETEXT_LEFT - Text$ is located left of the gadget
#PLACETEXT_RIGHT - Text$ is located right of the gadget
#PLACETEXT_ABOVE - Text$ is located above the gadget
#PLACETEXT_BELOW - Text$ is located below the gadget
#NG_HIGHLABEL - Text$ will be highlighted
$40 - Disable (gadget is ghosted and unusable)
$100 - Checkbox is ticked by default
$200 - Checkbox size is scaled to the width and

height specified (V39+)
Returns

Pointer to the gadget which has been created. At a simpler level, it can
be used to show whether the command was a success (non-zero value will be
returned) or not (returns 0 for failure).

Description
The GTCheckBox is a single gadget which can either be ticked or unticked.
The state of the gadget is kept after clicking on it. This command adds
a GTCheckBox to the specified GTList object.

The font that the text for the gadget appears in is the currently "Used"
Intuifont object.

NB: You cannot set the GTCB_Scaled, GA_Disabled, GTCB_Checked or
GT_Underscore tags using the GTTags command before a GTCheckBox, instead
you should logically OR the values described above to the flags parameter.

See also

GTLib 16 / 43

GTGZZPosition
,
GTStatus
,
GTTags
,
GTToggle

1.21 gtcycle

Command name
GTCycle

Template
[*g.Gadget=]GTCycle [(] GTList#,id,x,y,w,h,Text$,flags,Options$[,active] [)]

Parameters
GTList# - The number of the GTList object you want to add the new

GTCycle gadget to
id(.w) - The ID number for this gadget. This should be a unique

value for every gadget in a GTList. If your program is
going to run on OS2, you should be aware that gadtools
uses some gadget ID’s internally (and if they clash, you
will not get any events from the gadgets with the clashing
ID values). Starting the ID values at about 51 is
usually safe enough.

x(.w) - x position of top left corner of gadget
y(.w) - y position of top left corner of gadget
w(.w) - width of gadget
h(.w) - height of gadget
Text$ - String to add to the gadget. This string can be placed

either to the left, right, above or below the gadget.
The flags (below) control the position of this text.

flags(.l) - The flags control many aspects of the gadget. The flags
that can be used with this type of gadget (combine them
using the "or" symbol: "|") are:

(you can only use one of the #PLACETEXT flags at any time)
#PLACETEXT_LEFT - Text$ is located left of the gadget (←↩

default)
#PLACETEXT_RIGHT - Text$ is located right of the gadget
#PLACETEXT_ABOVE - Text$ is located above the gadget
#PLACETEXT_BELOW - Text$ is located below the gadget
#NG_HIGHLABEL - Text$ will be highlighted
$40 - Disable (gadget is ghosted and unusable)

Option$ - The different options you want to be available in the gadget
separated by the "|" character

active(.w) - the currently active option in the cycle gadget, starting from ←↩
1

Returns
Pointer to the gadget which has been created. At a simpler level, it can
be used to show whether the command was a success (non-zero value will be
returned) or not (returns 0 for failure).

GTLib 17 / 43

Description
Creates a GTCycle gadget and adds it to the specified GTList object. The
Options$ should be specified like "blah|foo|bar" (each option in the gadget
separated by a "|" character).

The font that the text for the gadget appears in is the currently "Used"
Intuifont object.

See also

GTGZZPosition
,
GTTags

1.22 gtdisable

Command name
GTDisable

Template
GTDisable GTList#,id

Parameters
GTList# - The number of the GTList object in which the gadget you wish to

disable can be found
id(.w) - The ID number of the gadget to disable

Returns
Nothing

Description
Disables the gadget with the specified ID number in the specified GTList.
The gadget will be redrawn ghosted and will not accept any input from the
user until it is enabled.

I don’t think it’s possible to disable GTListView’s under OS2.

See also

GTEnable

1.23 gtenable

Command name
GTEnable

Template
GTEnable GTList#,id

GTLib 18 / 43

Parameters
GTList# - The number of the GTList object which contains the gadget you

want to enable
id(.w) - The ID number of the gadget you want to enable

Returns
Nothing

Description
Enables the specified gadget from the specified GTList. This has the
opposite effect of GTDisable - it will remove the ghosting on the gadget
and will allow the user to interact with it again.

See also

GTDisable

1.24 gteventmicros

Command name
GTEventMicros

Template
microseconds.l=GTEventMicros

Parameters
None

Returns
A long which represents the microseconds value of the last event.

Description
Each event you recieve from your window has a time associated with it.
This time is specified as a seconds and microseconds count.This command
returns the microseconds value. You can use these times for doing things
like checking for doubleclicks of mousebuttons.

See also

GTEventSeconds
, intuition.library/DoubleClick() from OS Autodocs

1.25 gteventseconds

Command name
GTEventSeconds

Template
seconds.l=GTEventSeconds

GTLib 19 / 43

Parameters
None.

Returns
A long which represents the seconds value of the last event.

Description
Each event you recieve from your window has a time associated with it.
This time is specified as a seconds and microseconds count.This command
returns the seconds value. You can use these times for doing things
like checking for doubleclicks of mousebuttons.

See also

GTEventMicros
, intuition.library/DoubleClick() from OS Autodocs

1.26 gtfreegadget

Command name
GTFreeGadget

Template
GTFreeGadget GTList#,id

Parameters
GTList# - The number of the GTList object in which the gadget is
id(.w) - The ID number of the gadget to free

Returns
The number of gadgets removed from the gadget list (optional).

Description
Will free a single gadget from a GTList. Not sure if it works properly
and you may have to detach the GTList from the window before doing this.

See also

DetachGTList

1.27 gtgadptr

Command name
GTGadPtr

Template

*g.Gadget=GTGadPtr(GTList#,id[,last])

Parameters
GTList# - The number of the GTList object in which the gadget is

GTLib 20 / 43

id(.w) - the ID number of the gadget to get the pointer to
last(.w) - optional parameter, set this to something other than 0

and it will return the last gadget in the list with the
correct ID. Default bahaviour (and if this parameter is
0) is to return the first gadget with the correct ID.

Returns
A pointer to a Gadget structure which is the gadget you specified.

Description
This command is intended for use by advanced programmers. It will
return a pointer to the gadget as specified by the easier method
of GTList# and Gadget ID number.

The command by default (and also when last=0) finds the first
gadget in the list with the correct ID. When you set the value
of last to something else, you get the last gadget in the list
with the matching ID.

The reason for doing this is because gadgets such as GTListViews,
GTScrollers, GTSliders, etc, are all made up from a number of
separate gadgets. You may need to get the first gadget that makes
up these complex gadgets for some reason (like stepping through
all the parts) or you may want the last gadget (which is the one you
normally use with the OS functions as the gadget pointer).

See also

1.28 gtgetattrs

Command name
GTGetAttrs

Template
value.l=GTGetAttrs(GTList#,id,Tag)

Parameters
GTList# - The number of the GTList object which the gadget is in
id(.w) - the ID number of the gadget you want the attributes of
Tag(.l) - the tag value, which is used to specify which attribute

to enquire about. See the gadtools.library autodoc for
a list of all the tags avaialble for all gagdet types.

Returns
A long which is the value of the attribute. Depending on the tag
you specified, this value will mean many different things.

Description
This command only works on OS3+! You can use it to find out
attributes about a specific gadget.

See also
gadtools.library autodoc

GTLib 21 / 43

1.29 gtgetinteger

Command name
GTGetInteger

Template
value.l=GTGetInteger(GTList#,id)

Parameters
GTList# - The number of the GTList object that the gadget is in
id(.w) - The ID number of the integer gadget to get the value of

Returns
Long which has the same value as the number displayed in the GTInteger
gadget.

Description
This command reads the value in the specified GTInteger gadget and
returns it.

See also

GTInteger

1.30 gtgetinternal

Command name
GTGetInternal

Template

*first.gtil=GTGetInternal

Parameters
None.

Returns
Pointer to the first item in the internal memory lists, which store
pointers to gadgets from the GTList objects.

Description
The structure of the internal memories look like this:

NEWTYPE.gtinlist

*Succ.gtinlist ; Pointer to next gadget

*Gad.Gadget ; Pointer to gadget returned by CreateGadget

*Text.b ; Gadget text (if required)
Special.l ; The special stuff (size.l stored at (-4,Special))
id.w ; gadget ID
pad.w

End NEWTYPE

NEWTYPE.gtil

*Succ.gtil

GTLib 22 / 43

*First.gtinlist

*gtlst.gtcontext ; GTList pointer
pad.w

End NEWTYPE

See also

1.31 gtgetstring

Command name
GTGetString

Template
str$=GTGetString(GTList#,id)

Parameters
GTList# - The number of the GTList object that the gadget is in
id(.w) - The ID number of the GTString gadget that you want to get the

contents of

Returns
String which is the same as is currently being displayed in the GTString
gadget.

Description
This command reads the contents of the specified gadget (must be a
GTString!) and returns it as a string.

See also

GTString

1.32 gtgzzposition

Command name
GTGZZPosition

Template
GTGZZPosition On/Off

Parameters
On/Off - Sets the global mode for gzzposition at gadget creation on or off

Returns
Nothing

Description
This partially controls where the gadgets are located in your window at
when they are created. When GTGZZPosition is set to off (the default)
all gadgets will have the left window border width added to the x position
and the top window border height added to the y position of your gadget.

GTLib 23 / 43

This allows you to use co-ordinates starting from 0,0 to mean the top-
left of the inner area of the window. When this is set to on, these
window border sizes will not be added - which is normally only used with
windows which have the #WFLG_GIMMEZEROZERO flag set as this causes the
top-left of the inner area of the window to be at 0,0 anyway, so adding
the window borders is not required (and probably not desired).

See also
Window command in manual (description of GIMMEZEROZERO flag)

1.33 gtinteger

Command name
GTInteger

Template
[*g.Gadget=]GTInteger [(] GTList#,x,y,w,h,Text$,flags,default [)]

Parameters
GTList# - The number of the GTList object you want to add the new

GTInteger gadget to
id(.w) - The ID number for this gadget. This should be a unique

value for every gadget in a GTList. If your program is
going to run on OS2, you should be aware that gadtools
uses some gadget ID’s internally (and if they clash, you
will not get any events from the gadgets with the clashing
ID values). Starting the ID values at about 51 is
usually safe enough.

x(.w) - x position of top left corner of gadget
y(.w) - y position of top left corner of gadget
w(.w) - width of gadget
h(.w) - height of gadget
Text$ - String to add to the gadget. This string can be placed

either to the left, right, above or below the gadget.
The flags (below) control the position of this text.

flags(.l) - The flags control many aspects of the gadget. The flags
that can be used with this type of gadget (combine them
using the "or" symbol: "|") are:

(you can only use one of the #PLACETEXT flags at any time)
#PLACETEXT_LEFT - Text$ is located left of the gadget (←↩

default)
#PLACETEXT_RIGHT - Text$ is located right of the gadget
#PLACETEXT_ABOVE - Text$ is located above the gadget
#PLACETEXT_BELOW - Text$ is located below the gadget
#NG_HIGHLABEL - Text$ will be highlighted
$40 - Disable (gadget is ghosted and unusable)
$80 - Gadget produces a gadget down event as ←↩

soon
as it is entered

default(.l) - The initial value to set the contents of the gadget to

Returns
Pointer to the gadget which has been created. At a simpler level, it can
be used to show whether the command was a success (non-zero value will be
returned) or not (returns 0 for failure).

GTLib 24 / 43

Description
Adds a GTInteger gadget to the specified GTList object. This type of
gadget is a string entry type gadget, but it only allows digits (0-9) to
be entered; no decimal point, floating point, or mathematical symbols.

The font that the text for the gadget appears in is the currently "Used"
Intuifont object.

NB: you cannot use the GTIN_Number tag to set the value of the
gadget when it is being created - you must use the "Default" parameter.

See also

GTGetInteger
,
GTGZZPosition
,
GTSetInteger
,
GTTags

1.34 gtlist

Command name
GTList

Template
N/A

Parameters
N/A

Returns
N/A

Description
GTList is the name of the object used by the bbgtlib. You use it just
the same way as every other object in Blitz 2. You cannot "Load" or "Save"
a GTList object however, and you do not really need to "Use" a GTList
object, as all commands take the object number as a parameter and do not
depend on the currently used object.

To display a GTList in a window and start getting input from it, you
use AttachGTList. You can also remove the GTList from the window using
DetachGTList. When you recieve events from the gadgets, it is the same
procedures you use as with old-style gadgets.

Starting from these updated version of the bbgtlib, pressing the "Help"
key over the GTList command will give you the date that the library was
compiled - you can use this as a quick version check.

For advanced coders, the structure of a GTList object is:
NEWTYPE.mygtlist

GTLib 25 / 43

mycontext.l ;0 points to context
visualinfo.l ;4 our visual info from current screen
current.l ;8 current gadget
gtwindow.l ;12 window gadgetlist is attached to

End NEWTYPE

See also
"Objects" and "Gadgets" chapters of the Blitz manual,

AttachGTList
,
DetachGTList

1.35 gtlistaddress

Command name
GTListAddress

Template

*address.List=GTListAddress(list())

Parameters
list() - The name of a Blitz2 list array.

Returns
Pointer to the head of list structure for the specified Blitz2 list array.

Description
Finds the list structure (they define the start of every OS structured
list) for the specified Blitz 2 list array. This can be useful when dealing
with the list contents manually, using the list with OS commands,
and also things like GTSetAttrs where you may need to pass pointers
to lists in taglists.

See also

GTSetAttrs

1.36 gtlistview

Command name
GTListView

Template
[*g.Gadget=]GTListView [(] GTList#,id,x,y,w,h,Text$,flags,list()[,selected[, ←↩

top]] [)]

Parameters
GTList# - The number of the GTList object you want to add the new

GTListView gadget to
id(.w) - The ID number for this gadget. This should be a unique

GTLib 26 / 43

value for every gadget in a GTList. If your program is
going to run on OS2, you should be aware that gadtools
uses some gadget ID’s internally (and if they clash, you
will not get any events from the gadgets with the clashing
ID values). Starting the ID values at about 51 is
usually safe enough.

x(.w) - x position of top left corner of gadget
y(.w) - y position of top left corner of gadget
w(.w) - width of gadget
h(.w) - height of gadget
Text$ - String to add to the gadget. This string can be placed

either to the left, right, above or below the gadget.
The flags (below) control the position of this text.

flags(.l) - The flags control many aspects of the gadget. The flags
that can be used with this type of gadget (combine them
using the "or" symbol: "|") are:

(you can only use one of the #PLACETEXT flags at any time)
#PLACETEXT_LEFT - Text$ is located left of the gadget (←↩

default)
#PLACETEXT_RIGHT - Text$ is located right of the gadget
#PLACETEXT_ABOVE - Text$ is located above the gadget
#PLACETEXT_BELOW - Text$ is located below the gadget
#NG_HIGHLABEL - Text$ will be highlighted
$40 - Disable (gadget is ghosted and unusable,

perhaps only works on OS3+)
$1000 - GTListView is read-only

list() - The list of items to display in the listview
selected(.l) - The number of the currently selected item in the listview
top(.l) - The first item to display, at the top of the listview

Returns
Pointer to the gadget which has been created. At a simpler level, it can
be used to show whether the command was a success (non-zero value will be
returned) or not (returns 0 for failure).

Description
This command adds a GTListView gadget to the specified GTList object. A
GTListView displays a list of strings and provides a scroller and arrows
for navigating the list.

You should do an AddIDCMP #LISTVIEW_IDCMP before you
open your window so that the listview gadget behaves correctly.

The list you attach to the GTListView must be a List array, and must have
the following structure to the type that each item is:

NEWTYPE.gtlv
pad.w ; or any other variable you want, but it must be a .w
text.s ; this is the text that gets displayed in the listview
... ; any other fields can come after the first two

END NEWTYPE

For calculating the selected and top parameters, the first item displayed
in the listview is item number 0. To make full use of the selected
parameter, you also need to specify the #GTLV_ShowSelected tag. If you
set the value of this tag to 0 you get a string gadget under the listview
for OS2.04/5 and a highlight bar for OS3+. If you set it to anything else
than 0, it must be a pointer to a string gadget, which will show the

GTLib 27 / 43

selected item (I think this is the only way to use this tag on OS2.00).
I also think that the string gadget must be the same width and x position
as the listview.

NB: You cannot use the GTLV_Selected, GTLV_Top, GTLV_Labels or GTLV_ReadOnly
tags when you are creating a GTListView - you must use the abilities of this
command (the list, selected and top parameters, and the $1000 readonly flag)
to set those items.

The font that the text for the gadget appears in is the currently "Used"
Intuifont object.

See also

GTGZZPosition
,
GTTags

1.37 gtmx

Command name
GTMX

Template
[*g.Gadget=]GTMX [(] GTList#,id,x,y,w,h,Text$,flags,Option$[,active] [)]

Parameters
GTList# - The number of the GTList object you want to add the new

GTMX gadget to
id(.w) - The ID number for this gadget. This should be a unique

value for every gadget in a GTList. If your program is
going to run on OS2, you should be aware that gadtools
uses some gadget ID’s internally (and if they clash, you
will not get any events from the gadgets with the clashing
ID values). Starting the ID values at about 51 is
usually safe enough.

x(.w) - x position of top left corner of gadget
y(.w) - y position of top left corner of gadget
w(.w) - width of gadget
h(.w) - height of gadget
Text$ - String to add to the gadget. This string can be placed

either to the left, right, above or below the gadget.
The flags (below) control the position of this text.

flags(.l) - The flags control many aspects of the gadget. The flags
that can be used with this type of gadget (combine them
using the "or" symbol: "|") are:

(you can only use one of the #PLACETEXT flags at any time)
#PLACETEXT_LEFT - Text$ is located left of the gadget (←↩

default)
#PLACETEXT_RIGHT - Text$ is located right of the gadget
#PLACETEXT_ABOVE - Text$ is located above the gadget
#PLACETEXT_BELOW - Text$ is located below the gadget
#NG_HIGHLABEL - Text$ will be highlighted
$40 - Disable (gadget is ghosted and unusable)

GTLib 28 / 43

$200 - Scale each MX button to the specified ←↩
width and height.

Option$ - The text for the different options
active(.l) - Which option is active by default

Returns
Pointer to the gadget which has been created. At a simpler level, it can
be used to show whether the command was a success (non-zero value will be
returned) or not (returns 0 for failure).

Description
This command adds a GTMX gadget to the specified GTList object. The GTMX
gadget is a "1 out of n" choice type gadget (one option out of n is always
selected).

The width and height are usually ignored, but you can add the #GTMX_Scaled
tag (and set it to true) under OS3+ and the buttons will be scaled to the
size specified.

The #PLACETEXT... flags in the case of the GTMX gadget determines where the
text for each option lines up, not the Text$. Usually, the Text$ is ignored
by the OS, but you can add the #GTMX_TitlePlace (OS3+ only!) to add the Text$
to the gadget.

The options are specified in a string, with each option separated by the "|"
character, i.e. "blah|foo|bar" would give you three options: blah, foo and
bar.

You will want to add AddIDCMP #MX_IDCMP before you
open your window and then check for GTMX events by checking for the
#IDCMP_GADGETDOWN event.

The font that the text for the gadget appears in is the currently "Used"
Intuifont object.

NB: You cannot use the GTTags command to set the GTMX_Scaled tag - you must do
that by logically OR’ing the value $200 to the flags. You also cannot use the
GTMX_Active tag to set the initial active option, you must use the active
parameter.

See also

GTGZZPosition
,
GTTags

1.38 gtnewlookprop

Command name
GTNewLookProp

Template
GTNewLookProp [Mode=On/Off] or [GTList,ID,On/Off]

GTLib 29 / 43

Parameters
Mode - Sets the default mode for when creating gadgets which contain a

slider element.

GTList# - The number of the GTList object in which to find the gadget
ID(.w) - The ID number of the gadget to set the prop appearance
On/Off - Turns on or off the new look for the prop

Returns
Nothing

Description
This command works in two modes:

1) When using a single parameter, this controls the global setting for
all gadgets with a slider element created after calling this command.
If this is set to "On", all the gadgets created which have a
slider element will get that slider set to use the new (OS2+)
look. When "Off", the appearance of the slider will be the
standard look. Defaults to "Off".

2) When using three parameters you can change the look of a single gadget
that you specify with the GTList# and gadget ID number. You may have
to manually re-draw the gadget after calling this command if the
GTList is already attached to a window.

See also

GTListView
,
GTScroller
,
GTSlider

1.39 gtnumber

Command name
GTNumber

Template
[*g.Gadget=]GTNumber [(] GTList#,id,x,y,w,h,Text$,flags,value [)]

Parameters
GTList# - The number of the GTList object you want to add the new

GTNumber gadget to
id(.w) - The ID number for this gadget. This should be a unique

value for every gadget in a GTList. If your program is
going to run on OS2, you should be aware that gadtools
uses some gadget ID’s internally (and if they clash, you
will not get any events from the gadgets with the clashing
ID values). Starting the ID values at about 51 is
usually safe enough.

x(.w) - x position of top left corner of gadget
y(.w) - y position of top left corner of gadget

GTLib 30 / 43

w(.w) - width of gadget
h(.w) - height of gadget
Text$ - String to add to the gadget. This string can be placed

either to the left, right, above or below the gadget.
The flags (below) control the position of this text.

flags(.l) - The flags control many aspects of the gadget. The flags
that can be used with this type of gadget (combine them
using the "or" symbol: "|") are:

(you can only use one of the #PLACETEXT flags at any time)
#PLACETEXT_LEFT - Text$ is located left of the gadget (←↩

default)
#PLACETEXT_RIGHT - Text$ is located right of the gadget
#PLACETEXT_ABOVE - Text$ is located above the gadget
#PLACETEXT_BELOW - Text$ is located below the gadget
#NG_HIGHLABEL - Text$ will be highlighted
$8000 - Remove border from text gadget

value(.l) - The value to be displayed initially in the gadget

Returns
Pointer to the gadget which has been created. At a simpler level, it can
be used to show whether the command was a success (non-zero value will be
returned) or not (returns 0 for failure).

Description
This command adds a GTNumber gadget to the specified GTList. The GTNumber
gadget is a read only numeric display gadget, a bit like the GTInteger.

The font that the text for the gadget appears in is the currently "Used"
Intuifont object.

NB: You cannot use the GTNM_Number tag to set the initial value of the
gadget, you use the value parameter in the command.

See also

GTGZZPosition
,
GTInteger
,
GTSetInteger
,
GTTags

1.40 gtpalette

Command name
GTPalette

Template
[*g.Gadget=]GTPalette [(] GTList#,id,x,y,w,h,Text$,flags,depth[,Color] [)]

Parameters
GTList# - The number of the GTList object you want to add the new

GTPalette gadget to

GTLib 31 / 43

id(.w) - The ID number for this gadget. This should be a unique
value for every gadget in a GTList. If your program is
going to run on OS2, you should be aware that gadtools
uses some gadget ID’s internally (and if they clash, you
will not get any events from the gadgets with the clashing
ID values). Starting the ID values at about 51 is
usually safe enough.

x(.w) - x position of top left corner of gadget
y(.w) - y position of top left corner of gadget
w(.w) - width of gadget
h(.w) - height of gadget
Text$ - String to add to the gadget. This string can be placed

either to the left, right, above or below the gadget.
The flags (below) control the position of this text.

flags(.l) - The flags control many aspects of the gadget. The flags
that can be used with this type of gadget (combine them
using the "or" symbol: "|") are:

(you can only use one of the #PLACETEXT flags at any time)
#PLACETEXT_LEFT - Text$ is located left of the gadget (←↩

default)
#PLACETEXT_RIGHT - Text$ is located right of the gadget
#PLACETEXT_ABOVE - Text$ is located above the gadget
#PLACETEXT_BELOW - Text$ is located below the gadget
#NG_HIGHLABEL - Text$ will be highlighted
$40 - Disable (gadget is ghosted and unusable)

depth(.l) - The depth of the gadget, effectively the number of colours
(number of colours = 2 ^ depth)

Color(.w) - The initial colour to be highlighted in the palette

Returns
Pointer to the gadget which has been created. At a simpler level, it can
be used to show whether the command was a success (non-zero value will be
returned) or not (returns 0 for failure).

Description
This command adds a GTPalette gadget to the specified GTList object.
The GTPalette gadget is a colour selection gadget, and displays
a set of boxes, each one showing a different colour from the palette
of the screen that the gadget is displayed on.

The font that the text for the gadget appears in is the currently "Used"
Intuifont object.

NB: You cannot use the GTPA_Depth or GTPA_Color tags to set those
values, you must use the parameters which are available in the command.
You should also use GTPA_IndicatorWidth or GTPA_IndicatorHeight tag
when you use the Color parameter.

See also

GTGZZPosition
,
GTTags

GTLib 32 / 43

1.41 gtscroller

Command name
GTScroller

Template
[*g.Gadget=]GTScroller [(] GTList#,id,x,y,w,h,Text$,flags,Visible,Total[,Top] ←↩

[)]

Parameters
GTList# - The number of the GTList object you want to add the new

GTPalette gadget to
id(.w) - The ID number for this gadget. This should be a unique

value for every gadget in a GTList. If your program is
going to run on OS2, you should be aware that gadtools
uses some gadget ID’s internally (and if they clash, you
will not get any events from the gadgets with the clashing
ID values). Starting the ID values at about 51 is
usually safe enough.

x(.w) - x position of top left corner of gadget
y(.w) - y position of top left corner of gadget
w(.w) - width of gadget
h(.w) - height of gadget
Text$ - String to add to the gadget. This string can be placed

either to the left, right, above or below the gadget.
The flags (below) control the position of this text.

flags(.l) - The flags control many aspects of the gadget. The flags
that can be used with this type of gadget (combine them
using the "or" symbol: "|") are:

(you can only use one of the #PLACETEXT flags at any time)
#PLACETEXT_LEFT - Text$ is located left of the gadget (←↩

default)
#PLACETEXT_RIGHT - Text$ is located right of the gadget
#PLACETEXT_ABOVE - Text$ is located above the gadget
#PLACETEXT_BELOW - Text$ is located below the gadget
#NG_HIGHLABEL - Text$ will be highlighted
$40 - Disable (gadget is ghosted and unusable)
$80 - Report IDCMP_GADGETDOWN events
$400 - Make slider vertical instead of horizontal ←↩

.
$800 - Display arrow gadgets
$4000 - Do not report IDCMP_GADGETUP events for ←↩

the
scroller (defaults to reporting these ←↩

events,
which is the opposite of what is described ←↩

in
the autodocs)

Visible(.l) - Size of part of the total range that can be seen
Total(.l) - The total range that the scroller represents
Top(.l) - The first value that can be seen currently

Returns
Pointer to the gadget which has been created. At a simpler level, it can
be used to show whether the command was a success (non-zero value will be
returned) or not (returns 0 for failure).

GTLib 33 / 43

Description
This command adds a GTScroller to the specified GTList object. A GTScroller
comprises a slider part and two arrow gadgets. If you think the last three
parameters are confusing, think of drawer windows on the Workbench: there
are two GTScrollers (one for horizontal and one for vertical). The size of
the knob is related to the visible size of the window (the Visible
parameter) and the total size of the window (Total) affects how big the
knob is. Of course, it does not have to be limited to use for scrolling
around areas that are larger than the current window, but that is the most
common use.

NB: You cannot use the #PGA_Freedom tag to set the direction of the slider,
you must use the $400 flag. If you want arrow gadgets displayed you must
make sure to set the $800 flag. You can specify the size of the arrows with
GTArrowSize (not the GTSC_Arrows tag). You also cannot use the GA_Disabled,
GA_Relverify, GA_Immediate, GTSC_Top, GTSC_Total and GTSC_Visible tags as
these can all be controlled by the parameters of the command.

You will probably want to add AddIDCMP #SCROLLER_IDCMP
before you open your window to make sure the scroller behaves as it should.

The font that the text for the gadget appears in is the currently "Used"
Intuifont object.

See also

GTArrowSize
,
GTGZZPosition
,
GTNewLookProp
,
GTTags

1.42 gtsetattrs

Command name
GTSetAttrs

Template
GTSetAttrs GTList#,id [,Tag,Value...]

Parameters
GTList# - The number of the GTList object
id(.w) - The ID number for the gadget
Tag(.l) - The tag to set the value of
Value(.l) - The value of the tag

Returns
Nothing

Description
This command changes some attributes of a specific gagdet, via the use

GTLib 34 / 43

of tags. You can specify the tag and the value to set for it. You can
specify multiple tags at the same time, just keep repeating the Tag,Value
parameters on the end of the command. Tags are specific to the type
of gadget in question and some can only be set when the gadget is first
created. You can find a list of all the tags for all the gadgets in the
gadtools.library autodoc.

See also
GT_SetGadgetAttrs command in the gadtools.library autodoc

1.43 gtsethighlight

Command name
GTSetHighlight

Template
GTSetHighlight GTList#,id,value

Parameters
GTList# - The number of the GTList object that the gadget is in
id(.w) - The ID number of the GTListView you want to highlight an item from
value(.w) - The item you want to set as highlighted

Returns
Nothing

Description
This command will set the highlighted item it in a GTListView gadget.
The item numbers start from 0 as the first item in the list. Under OS3+
you can specify -1 to unhighlight an item.

See also

GTListView

1.44 gtsetinteger

Command name
GTSetInteger

Template
GTSetInteger GTList#,id,value

Parameters
GTList# - The number of the GTList object that the gadget is in
id(.w) - The ID number of the GTInteger or GTNumber gadget to set the

value of
value(.l) - The value to display in the gadget

Returns
Nothing

GTLib 35 / 43

Description
This command sets the value you pass as the value which is being displayed
in either GTInteger or GTNumber gadgets.

See also

GTInteger
,
GTNumber

1.45 gtsetstring

Command name
GTSetString

Template
GTSetString GTList#,id,string$

Parameters
GTList# - The number of the GTList object that the gadget is in
id(.w) - The ID number of the GTString or GTText gadget to set the

string of
string$ - The string to display in the gadget

Returns
Nothing

Description
This command sets the string you pass as the text which is being displayed
in either GTString or GTText gadgets.

See also

GTString
,
GTText

1.46 gtshape

Command name
GTShape

Template
[*g.Gadget=]GTShape [(] GTList#,id,x,y,flags,Shape#[,Shape#] [)]

Parameters
GTList# - The number of the GTList object you want to add the new

GTShape gadget to
id(.w) - The ID number for this gadget. This should be a unique

GTLib 36 / 43

value for every gadget in a GTList. If your program is
going to run on OS2, you should be aware that gadtools
uses some gadget ID’s internally (and if they clash, you
will not get any events from the gadgets with the clashing
ID values). Starting the ID values at about 51 is
usually safe enough.

x(.w) - x position of top left corner of gadget
y(.w) - y position of top left corner of gadget
w(.w) - width of gadget
h(.w) - height of gadget
flags(.l) - The flags control many aspects of the gadget. The flags

that can be used with this type of gadget (combine them
using the "or" symbol: "|") are:

$40 - Disable (gadget is ghosted and unusable)
$80 - Immediate (gadget produces events when clicked

down, as well as when released)
$100 - If the gadget is in toggle mode (see below) setting

this flag will make the initial state "pressed".
$2000 - Makes the gadget a toggle gadget (the

gadget will stay selected until the
user clicks on the gadget again)

$4000 - Disabled relverify operation of gadget (does not
send any IDCMP_GADGETUP events)

Shape# - The number of the Shape object to use as the imagery for
the gadget

Shape# - An optional parameter to allow you to specify the number
of a Shape object that gets displayed when the object is
highlight (either pressed by the user, or set in software)

Returns
Pointer to the gadget which has been created. At a simpler level, it can
be used to show whether the command was a success (non-zero value will be
returned) or not (returns 0 for failure).

Description
This command adds a generic gadget to the specified GTList, which gets
its imagery from the specified Shape objects.

See also

GTGZZPosition
,
GTTags

1.47 gtslider

Command name
GTSlider

Template
[*g.Gadget=]GTSlider [(] GTList#,id,x,y,w,h,Text$,flags,Min,Max[,Level] [)]

Parameters
GTList# - The number of the GTList object you want to add the new

GTLib 37 / 43

GTSlider gadget to
id(.w) - The ID number for this gadget. This should be a unique

value for every gadget in a GTList. If your program is
going to run on OS2, you should be aware that gadtools
uses some gadget ID’s internally (and if they clash, you
will not get any events from the gadgets with the clashing
ID values). Starting the ID values at about 51 is
usually safe enough.

x(.w) - x position of top left corner of gadget
y(.w) - y position of top left corner of gadget
w(.w) - width of gadget
h(.w) - height of gadget
Text$ - String to add to the gadget. This string can be placed

either to the left, right, above or below the gadget.
The flags (below) control the position of this text.

flags(.l) - The flags control many aspects of the gadget. The flags
that can be used with this type of gadget (combine them
using the "or" symbol: "|") are:

(you can only use one of the #PLACETEXT flags at any time)
#PLACETEXT_LEFT - Text$ is located left of the gadget (←↩

default)
#PLACETEXT_RIGHT - Text$ is located right of the gadget
#PLACETEXT_ABOVE - Text$ is located above the gadget
#PLACETEXT_BELOW - Text$ is located below the gadget
#NG_HIGHLABEL - Text$ will be highlighted
$40 - Disable (gadget is ghosted and unusable)
$80 - Gadget sends IDCMP_GADGETDOWN events (←↩

immediate)
$400 - Make slider vertical instead of horizontal ←↩

.
$4000 - Stop gadget from sending IDCMP_GADGETUP

events (relverify)
Min(.l) - The minimum value that the slider can be set to
Max(.l) - The maximum value that the slider can be set to
Level(.l) - The initial value to set the slider position to (default=0)

Returns
Pointer to the gadget which has been created. At a simpler level, it can
be used to show whether the command was a success (non-zero value will be
returned) or not (returns 0 for failure).

Description
This command adds a GTSlider gadget to the specified GTList object. A
GTSlider gadget is a gadget which sllows you to position a knob between
two limits. This gadget is usually used to set a specific value in a range
rather than set a range of values within a range (like GTScroller). Typical
uses are a volume control, etc.

NB: You cannot use the #PGA_Freedom tag to set the direction of the slider,
you must use the $400 flag. You also cannot use the GA_Disabled, GA_Immediate,
GTSL_RelVerify, GTSL_Min, GTSL_Max or GTSL_Level tags, as these are all
controlled by the parameters in this command.

You will probably want to add AddIDCMP #SLIDER_IDCMP
before you open your window to make sure the slider behaves as it should.

The font that the text for the gadget appears in is the currently "Used"

GTLib 38 / 43

Intuifont object.

See also

GTGZZPosition
,
GTTags

1.48 gtstatus

Command name
GTStatus

Template
status.b=GTStatus(GTList#,Id)

Parameters
GTList# - The number of the GTList object in which the gadget can be found
Id(.w) - The ID number of the gadget you want to get the status of

Returns
Byte representing the state of the gadget in question, either 0 for
unselected/unhighlighted, or -1 for selected/highlighted.

Description
This command checks the status of boolean gadgets (single gadgets which
can be pressed or unpressed, such as checkboxes, buttons or shapes).

See also

GTButton
,
GTCheckBox
, GTShape

1.49 gtstring

Command name
GTString

Template
[*g.Gadget=]GTString [(] GTList#,id,x,y,w,h,Text$,flags,MaxChars [,default$] ←↩

[)]

Parameters
GTList# - The number of the GTList object you want to add the new

GTString to
id(.w) - The ID number for this gadget. This should be a unique

value for every gadget in a GTList. If your program is
going to run on OS2, you should be aware that gadtools

GTLib 39 / 43

uses some gadget ID’s internally (and if they clash, you
will not get any events from the gadgets with the clashing
ID values). Starting the ID values at about 51 is
usually safe enough.

x(.w) - x position of top left corner of gadget
y(.w) - y position of top left corner of gadget
w(.w) - width of gadget
h(.w) - height of gadget
Text$ - String to add to the gadget. This string can be placed

either to the left, right, above, below or inside the
gadget. The flags (below) control the position of this.

flags(.l) - The flags control many aspects of the gadget. The flags
that can be used with this type of gadget (combine them
using the "or" symbol: "|") are:

(you can only use one of the #PLACETEXT flags at any time)
#PLACETEXT_LEFT - Text$ is located left of the gadget
#PLACETEXT_RIGHT - Text$ is located right of the gadget
#PLACETEXT_ABOVE - Text$ is located above the gadget
#PLACETEXT_BELOW - Text$ is located below the gadget
#NG_HIGHLABEL - Text$ will be highlighted
$40 - Disable (gadget is ghosted and unusable)
$80 - Gadget produces an IDCMP_GADGETDOWN event

when entered (immediate) OS3+
MaxChars(.l) - The maximum number of characters that this gadget can hold
default$ - The initial string to be displayed in the gadget

Returns
Pointer to the gadget which has been created. At a simpler level, it can
be used to show whether the command was a success (non-zero value will be
returned) or not (returns 0 for failure).

Description
This command adds a GTString gadget to the specified GTList object. A
GTString gadget is a text entry gadget, where any character can be
entered.

The font that the text for the gadget appears in is the currently "Used"
Intuifont object.

NB: You cannot use the tags GA_Disabled, GA_Immediate, GTST_MaxChars and
GTST_String when you use this command since they are all controlled by
the parameters of this command.

See also

GTGetString
,
GTGZZPosition
,
GTSetString
,
GTTags

GTLib 40 / 43

1.50 gttags

Command name
GTTags

Template
GTTags Tag,Value [,Tag,Value...]

Parameters
Tag(.l) - The tag you want to set
Value(.l) - the value you want to set the tag to

Returns
Nothing

Description
This command is used to set the tags which are used in the creation of the
next gadget (and ONLY the next gadget, the tags are cleared afterwards).
You can specify multiple tags, just keep adding them to the command call,
as long as you specify both the Tag and Value on each occaision.

You can vary the gadgets a LOT with the tags.

See also
CreateGadgetA command in gadtools.library autodoc

1.51 gttext

Command name
GTText

Template
[*g.Gadget=]GTText [(] GTList#,id,x,y,w,h,Text$,flags,Display$ [)]

Parameters
GTList# - The number of the GTList object you want to add the new

GTString to
id(.w) - The ID number for this gadget. This should be a unique

value for every gadget in a GTList. If your program is
going to run on OS2, you should be aware that gadtools
uses some gadget ID’s internally (and if they clash, you
will not get any events from the gadgets with the clashing
ID values). Starting the ID values at about 51 is
usually safe enough.

x(.w) - x position of top left corner of gadget
y(.w) - y position of top left corner of gadget
w(.w) - width of gadget
h(.w) - height of gadget
Text$ - String to add to the gadget. This string can be placed

either to the left, right, above, below or inside the
gadget. The flags (below) control the position of this.

flags(.l) - The flags control many aspects of the gadget. The flags
that can be used with this type of gadget (combine them
using the "or" symbol: "|") are:

GTLib 41 / 43

(you can only use one of the #PLACETEXT flags at any time)
#PLACETEXT_LEFT - Text$ is located left of the gadget
#PLACETEXT_RIGHT - Text$ is located right of the gadget
#PLACETEXT_ABOVE - Text$ is located above the gadget
#PLACETEXT_BELOW - Text$ is located below the gadget
#NG_HIGHLABEL - Text$ will be highlighted
$8000 - Remove border from text gadget

Display$ - The initial string to be displayed in the gadget

Returns
Pointer to the gadget which has been created. At a simpler level, it can
be used to show whether the command was a success (non-zero value will be
returned) or not (returns 0 for failure).

Description
This command adds a GTText gadget to the specified GTList object. A
GTText gadget is a read-only text display gadget, where any character
can be displayed.

The font that the text for the gadget appears in is the currently "Used"
Intuifont object.

See also

GTGZZPosition
,
GTSetString
,
GTTags

1.52 gttoggle

Command name
GTToggle

Template
GTToggle GTList#,Id [,On|Off]

Parameters
GTList# - The number of the GTList object in which the gadget can be found
Id(.w) - The ID number of the gadget you want to get the status of
On|Off - The state which you want to set the gadget to

Returns
Nothing

Description
This command sets the state of boolean gadgets (single gadgets which
can be pressed or unpressed, such as checkboxes, buttons or shapes).
Setting it to On highlights/selects/presses the gadget, while off does
the opposite.

If you leave out the On|Off parameter the effect of this command is to
toggle the current state, i.e. On->Off, Off->On.

GTLib 42 / 43

See also

GTButton
,
GTCheckBox
, GTShape

1.53 gtunderscore

Command name
GTUnderscore

Template
GTUnderscore char

Parameters
char(.w) - The ASCII code of the character to indicate the underscore

in gadget texts.

Returns
Nothing

Description
When using gadtools.library, you can put special characters in the texts
for the gadgets which will tell gadtools.library to underline the next
character in the string. The default value is 95, which corresponds to
the underscore character ("_"). So, for example, a gadget text like
"_Hello there" will be drawn in your window like "Hello there".

The easiest way to get the ASCII value for the character you want to use
is to use something like: GTUnderscore Asc("_")
But replacing the underscore character with whatever character you want.

See also

1.54 gtuserdata

Command name
GTUserData

Template
GTUserData userdata

Parameters
userdata(.l) - The userdata value for the next gadget to be created.

Returns
Nothing

Description

GTLib 43 / 43

This command sets the userdata field of the next gadget to be created.
The userdata field is completely for use by the programmer and therefore
whatever value you set here will be available in the userdata field of
the created gadget. Up to you what you use it for, which can be anything.

See also

	GTLib
	Blitz Basic 2 GadTools Library
	Introduction
	Installing the bbgtlib
	Commands available in the library
	Example source for the BBGTLib
	List of bugs in the BBGTLib
	The source for the bbgtlib
	Improvements that need to be made
	History of the gtlib
	Thank you to...
	Who to contact
	attachgtlist
	detachgtlist
	gtactivategadget
	gtarrowsize
	gtbevelbox
	gtbutton
	gtchangecycle
	gtchangelist
	gtcheckbox
	gtcycle
	gtdisable
	gtenable
	gteventmicros
	gteventseconds
	gtfreegadget
	gtgadptr
	gtgetattrs
	gtgetinteger
	gtgetinternal
	gtgetstring
	gtgzzposition
	gtinteger
	gtlist
	gtlistaddress
	gtlistview
	gtmx
	gtnewlookprop
	gtnumber
	gtpalette
	gtscroller
	gtsetattrs
	gtsethighlight
	gtsetinteger
	gtsetstring
	gtshape
	gtslider
	gtstatus
	gtstring
	gttags
	gttext
	gttoggle
	gtunderscore
	gtuserdata

